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Hard and Soft-Core Equations of 
State for Simple Fluids? 
X. Characteristic Curves and Loci of C,, Extrema for the 
Lennard-Jones 6-1 2 Equation of State 

JOHN STEPHENSON 

Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2J 1. 

(Received April, 1980) 

Characteristic curves and loci of C ,  extrema are constructed for the Lennard-Jones 6-12 
equation of state, using fitted and approximate equations of state, and the exact virial expansion 
at low densities. The shape of the C ,  locus near its termination temperature is analyzed via 
the third and fourth “pressure” virial coeficients for hard-core and Lennard-Jones systems. 

1 INTRODUCTION 

In this final paper of this series’ we investigate the characteristic curves and 
loci of C ,  extrema along isotherms for the equation of state of a fluid with 
an intermolecular interaction of the Lennard-Jones 6-12 form. Below the 
Joule-Thomson inversion temperature T, we employ a parameterized 
equation of state (modified Benedict-Webb-Rubin) fitted to available 
numerical data by Nicolas et U Z . , ~  which is reliable in the range 0 < p i  < 1.2, 
0.5 < T* -= 6.0. Near the temperature axis at low densities one may use the 
virial expansion. The first five virial coefficients are known exactly for the 
Lennard-Jones 6- 12 Also at high temperatures and moderate 
densities one may employ the approximate Hansen equation of state.’ 

The characteristic curves have the expected shapes, and are displayed in 
Figures 1-4. The equation of Nicolas et al. is satisfactory within its prescribed 
range of validity, and admits a certain degree of extrapolation beyond this, 

t Work supported in part by the Natural Scientific and Engineering Research Council of 
Canada, Grant No. A6595. 
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230 J. STEPHENSON 

FIGURE 1 
calculated 

Characteristic curves for the Lennard-Jones 6-12 potential equation of state 

FIGURE 2 As for Figure I .  
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EQUATIONS O F  STATE FOR FLUIDS 231 

FIGURE 3 
calculated from the Hansen equation of state.’ 

Characteristic curves for the Lennard-Jones 6-12 potential equation of state, 

FIGURE 4 As for Figure 3. 
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232 J. STEPHENSON 

FIGURE 5 Characteristic curves for the Lennard-Jones 6- 12 potential equation of state, 
calculated from the exact virial expansion, using up to the fourth virial coefficient D. The ter- 
mination temperatures are obtained exactly from the second virial coefficient B. 

although it is somewhat erroneous at low densities. This is because the six 
termination temperatures for the Nicolas et al. equation are in only rough 
agreement with the exact values, which may be calculated from the exact 
classical Lennard-Jones second virial coefficient, V. However, the virial 
expansion takes over at low densities and is exact, subject to satisfactory 
convergence of the virial series (Figure 5).  Technical details are presented in 
Section 2. 

Loci of extrema along isobars of p”- ‘(aT/ap),  with rn = 1,2,3, are presen- 
ted in Figures 6 and 7. The na = 3 locus corresponds to extrema of C, along 
isotherms (I, IX). For both the Hansen and the Nicolas et al. equations of 
state at high temperatures, we find in the vicinity of the termination tempera- 
ture TD, that a locus of C, minima proceeds directly towards the high 
temperature region. Analysis of model soft-core equations of state in IX 
revealed this sort of behaviour to be typical of a hard-core system. At TD 
the second virial coefficient has a point of inflexion. The sign of the slope 
of the C, locus at TO is determined by the curvature of the third “pressure” 
virial coefficient (IX): 

(C - B2) c‘= 
RT ’ 

The slope is positive or negative according as C < 0 or C > 0, (IX(7)). 
( - denotes temperature differentiation). For the soft-core models in IX 
the change in sign of the slope at TD is associated with a “critical” value of 
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EQUATIONS OF STATE FOR FLUIDS 233 

FIGURE 6 Loci of extrama of p”-’(dT/dp), ,  m = 1,2, 3, along isobars for the approximate 
6-12 potential equations of state. For rn = 3 these are loci of extrema of the constant pressure 
specific heat C ,  along isotherms: [Loci calculated from the Nicolas er al. equation are “dotted,” 
and those from the Hansen equation are “dashed.”] 

FIGURE 7 As for Figure 6. 
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234 J .  STEPHENSON 

the exponent n in the repulsive part of the intermolecular potential. For the 
various models (in IX) this critical value of n is 19.060946 (IX, Section 3). 
However, a calculation using the third “pressure” virial coefficient for the 
Lennard-Jones 6-n potential* indicates that the corresponding critical 
value of the repulsive potential exponent for the Lennard-Jones model is 
n, rz 12.2, which is rather close to the value n = 12. Moreover, since 12 < nc 
x 12.2, the 6-12 equation of state loci would be expected to exhibit soft-core 
behaviour, with the C,  locus at To being a locus of maxima with negative 
slope. Since the exponent value 12 is only slightly less than the critical value 
12.2, there is room for error, especially when approximate equations of state 
are used. This matter is investigated via the virial expansion in Section 3, 
where it is shown that the precise shape of the Iocus near TD depends on the 
second temperature derivative of the fourth “pressure ” virial coefficient : 

(D - 3BC + 2B3) nl = 

Here B, C and D are the usual second, third and fourth “density” virial 
coefficients. To assist the analysis we have also looked at the corresponding 
virial coefficients for the hard-sphere fluid. 

We conclude in Section 4 with some remarks regarding the possible sig- 
nificance of the theory and results presented in this series of papers, and 
make some suggestions for future theoretical and experimental work. 

2 CHARACTERISTIC CURVES, AND TECHNICAL DETAILS OF 
EQUATIONS OF STATE 

From the defining equations for the ten characteristic curves (11, Table I), 
one observes that they may be constructed numerically from an equation 
of state by calculating the required partial derivatives of the pressure with 
respect to density and temperature. The six termination temperatures come 

TABLE I 
Exact and approximate values of termination temperatures 
for the Lennard-Jones 6-12 potential second virial coefficient 

Temperature Exact, T* Nicolas et a1.’ Hansen’ 

TB 3.4 I7928 3.474 2.189 
TC 6.430798 6.276 4.290 
TF 12.15737 1 1.325 8.409 
TA 25.15257 14.485 19.701 

48.28984 26.038 38.614 
Th 203.1 ROO - 177.31 
TLI 
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EQUATIONS OF STATE FOR FLUIDS 235 

from the second virial coefficient, and the final slopes of the loci involve the 
third virial coefficient too (11, (20)-(22)). The resulting curves are displayed 
in Figures 1-5. 

Analysis of the 33 parameter equation of Nicolas et al., and the simpler 
equation of H a n ~ e n , ~  is tedious but straightforward. For a Lennard-Jones 
6-12 potential 

or 

u*(r*) = 4[r*-'2 - r*-6],  (3b) 

where u* is scaled by the well depth E, and r* is scaled by the value of the 
radius no at which the potential vanishes. The position of the well bottom 
is at u = 21/6a0. The scaled versions of the pressure P, number density p, 
and temperature T are then 

so p t  equals the number of molecules in a volume 0:. The molecular volume 
parameter is defined by 

and the virial coefficients are scaled to 

The virial expansion then reads 
m PV -- - 1 + C B n p n - l ,  

ii'R T n = 2  

or 

2np: Il-' -- P* - 1  + x B " ( T )  
Po*T* n = 2  

where the left-hand sides of (7a) and (7b) are equal, and n' is the number of 
moles. 

The termination temperatures are calculated from the second virial coef- 
ficient. Table I provides a comparison between the exact values and the 
approximate values given by the Hansen and Nicolas et al. second virial 
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236 J. STEPHENSON 

coefficients, extracted from the equations of state. The agreement is rather 
poor. For Nicolas et al., 

B; = ($-(xl + x2T*-'/' + x 3 T*-'  + x4 T*-' + x5 T * - 3 )  (8) 

where x1 to x5 are in Ref. (2). And for the Hansen equation 

Bt = B1T*-'/4 - C1T*-314, (9) 
where 

and 

C ,  = 5.3692. 

The full Hansen equation is quite simple in structure, and is discussed in 
detail in Ref. (7). The second virial coefficient (9) has some unfortunate 
properties at low temperatures, as noted earlier in VI. [Note that the scaled 
density p:, and the density variables of Hansen' and of Hoover et al.' are all 
equal: to the number of molecules in a volume 0; .] 

In our graphs we have used the scaled variables (4), rather than rescale 
relative to the critical point. The critical parameters have been estimated 
by Barker and Henderson" and by Verlet and Hansen,' and lie close to the 
values 

P,* = 0.142, p;f, = 0.35, T,* = 1.35, (1 1) 
quoted by Nicolas et al.' 

The coexistence curve of Barker and Henderson" has been used in 
Figures 2,4 and 5, and the melting line (fusion curve) of Hansen and Verlet ' ' 
in Figures 1-5. 

PV 
n'RT 

The virial expansion is useful at low densities, where it takes the form 

(12) -- - 1 + B*p* + C*P*' + D * P * ~  + E * P * ~  + -... 

Values of the scaled second, third, fourth and fifth virial coefficients, B*, C*, 
D* and E* have been tabulated by Barker, Leonard and Pompe,' and addi- 
tional values by Henderson and Oden.6 It is easy to calculate B* directly from 
the classical integral formula (V, where b = 27ca3/3 was used to scale B, 
rather than bo as in (6) above). Note that the virial coefficients in (12) agree 
with those in (6), but 

27c 
P* = 7 Po* 
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EQUATIONS OF STATE FOR FLUIDS 237 

Temperature derivatives of B and C can be calculated essentially e ~ a c t l y , ~  
and elementary numerical differencing gives approximate value of D (I? is 
unreliable). 

When the virial expansion is employed, the more elementary characteristic 
curves J, A ,  B and C are determined by quite simple relations: 

J: B* + C*p* + D * P * ~  + ... = 0, (14a) 

C :  (B* - T*B*) + (2C* - T*C*)p* + (3D* - T * ~ * ) P * ~  + 1 . .  = 0. 

(144 
There is some simplification for the higher order characteristic curves 
such as 

B,: B* + 4C*p* + (B*C* + 9D*)p*’ + ... = 0, 

but generally it is easier to work with the truncated virial expansions of 
the pressure and its partial derivatives directly. If one retains just two virial 
coefficients B* and C*, the final slopes at the termination temperatures are 
given correctly. One can obtain moderately satisfactory extensions of the 
characteristic curves into the density versus temperature phase diagram, 
almost up to critical density, by retaining D* and b*. Including E* does not 
seem to improve matters significantly. The resulting curves are displayed in 
Figure 5. The exact termination temperatures are calculated in V (Table I). 

3 LOCI OF C, EXTREMA ALONG ISOTHERMS 

Loci of extrema of the constant pressure specific heat C ,  along isotherms, 
and related loci of extrema of pm-’(8T/8p) , ,  m = 1,2 ,3 ,  have been discussed 
in earlier papers of this series: for hard-core equations of state in I, fluid 
argon in 11, and model soft-core equations of state in IX. The relevant de- 
fining formula can be written in terms of partial derivatives of the pressure 
with respect to density and temperature, (I(25)). Then for a given equation 
of state it is easy to extract the relevant loci numerically. Results for the 
Lennard-Jones 6-12 equation of state are presented in Figures 6 and 7. 

As pointed out in the introduction, Section 1, the loci of C ,  extrema appear 
to have a form typical of a hard-core equation of state, especially in the 
vicinity of the critical point and in the dense liquid near the melting line 
(fusion curve). However, near the termination point at TD the shape of the 
C ,  locus is less well resolved. The repulsive exponent value 12 is close to, 
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238 J. STEPHENSON 

but on the soft-core side of, the “critical” exponent 12.2, at which value the 
slope of the C, locus changes over from a negative “soft-core’’ sign to a posi- 
tive “hard-core” sign. One would therefore expect that the locus of C, 
extrema should commence at TD as a locus of maxima with negative slope, 
which will, at some non-zero pressure and density, “double-back’’ as a 
locus of minima towards the high temperature region. This latter part of 
the locus might then be quite close to the forms in Figure 6 and 7 obtained 
from the Nicolas et al. and Hansen equations of state. 

Near the termination point T’ one may employ the “density” and “pres- 
sure” virial expansions (for one mole, so n’ = 1) 

B C D  PV 
RT V V  V 
- = 1 + - + , + 3 + . . . ,  

and 

PV = RT + B P  + C P 2  + DIP3 + * * * .  (16b) 
The “pressure” (primed) virial coefficients are algebraically related to the 
“density” virial coefficients, with B = B, and C and D’ as in (1) and (2). 
The C, locus is determined by the vanishing of the derivative 

As discussed previously in IX, the locus terminates at TD where B ( = B ’ )  has 
a point of inflexion, and, noting that B =- 0, proceeds into the phase diagram 
towards lower or higher temperatures according as C is positive or negative. 
The two possible situations are illustrated in Figure 8. If we keep the fourth 
“pressure” virial coefficient D‘, then there are two solutions for P near TD: 

and 

1 p x - - 5 i ;  el [ 1 - - +  c ‘ 2  ... 
BD, 

D 

Note that for real roots DD’/C‘’ I $. Clearly (18a) describes the C, locus 
terminating at To. Now (18b) offers the possibility of a second solution for 
P,  which will be positive provided C and D’ have opposite signs, and will be 
small and close to the temperature axis when C’ x 0, near the “critical” case. 
Presuming C’ > 0 (soft-core case), the second solution might now describe 
the “doubling-back ” of the locus towards high temperatures, as in Figure 
8a. The doubling-back commences at a temperature below TD where the quad- 
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EQUATIONS OF STATE FOR FLUIDS 239 

FIGURE 8 
of the locus of C ,  extrema near the termination point TD. 

Schematic pressure versus temperature diagrams showing the possible behaviour 

ratic in P in (17) has a double root and B D l  = c’. [The doubling-back 
takes place the other way round if %I < 0.1 Certainly this second solution 
will correspond to small values of P when C is small, but it will yield positive 
pressures only when D‘ has the opposite sign from c. In particular ut T,, 
where B = 0, the two solutions coalesce when %I vanishes. Moreover the 
approach to this critical case merger takes place from the positive pressure 
(physical) side when D’ and C have opposite signs. The description of the 
C, locus near To and the doubling-back process therefore depend on the 
curvature of the fourth “pressure” virial coefficient D‘. 

We now investigate the temperature dependence of D’. 
For the model systems in IV it appears that D’ is negative near To. For 

the T, - N soft-core model, it is easy to show that the required scaled virial 
coefficients are 

B 1 
B * = - =  c - -, bo t 

D 1  
bi 64 (19c) D*=-= - c3u3 = c3 x 0.2869495058 . , . , 

where 

u and b are van der Waals type parameters, defined as in I, IV and IX, and 
u2 and u3 are hard sphere virial coefficients which are known exactly, I. 
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240 J .  STEPHENSON 

Then from (1) and (2) 

and 

b: (a3 + 8)c3 3 3 2  6c [ 64t2 
D’ = 2 

The hard-core D’, with c = 1, has been plotted versus log,, t in IX (Figure 9). 
Its features-zeros, and locations of maxima and minima and points of in- 
flexion-are listed in Table 11. Clearly D‘ is negative at low temperatures, 
positive at high temperatures, and has three zeros, two maxima, one mini- 
mum and three points of inflexion. Between the two upper points of inflexion, 
where 2.036 < t < 17.302, D’ is negative. Compared with the critical tem- 
perature tcO, which equals 0.3753 12 for the F-model (I), the corresponding 
range is 5.424 < t/tCo < 46.100. This range is slightly below the range of 
“critical” values of tD/t, for the soft-core F model (IX, Table 11): 44.5 < 
tD/tc < 54.96. However, when the soft-core is inserted in (19), the range of 
t/t, in which b‘ is negative shifts towards higher temperatures, so as to 
include the termination point tD. [For example, when t ,  = 0, D’ is negative 

FIGURE 9 Exact second, third and fourth “density” virial coefficients, B*, C*, and D*, and 
third and fourth “pressure” virial coefficients, C‘* and D’*, for the Lennard-Jones 6-12 
potential. 
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TABLE I1 

Features of the fourth “pressure” virial coef- 
ficient for the hard-sphere fluid, D’ 

Zeros Maxima/Minirna Inflexion 

24 1 

0.490865 0.58791 1 0.689185 
1.186496 1.6101 19 2.035774 
8.336002 12.822014 17.301767 

at tD for N in the range 0.1205 . . . to 0.8586 , which includes the “critical” 
case (IX).] 

The situation for the Lennard-Jones 6-12 potential is rather similar. The 
relevant scaled virial coefficients: B*, C*, D* and C’*, D‘* may be evaluated, 
with the aid of the data of Barker et al. and Henderson and Oden, and are 
plotted versus log,, T* in Figure 9. D‘* has a high temperature mini- 
mum close to T* x 5.7, a maximum near 35, and associated points of in- 
flexion near 6 and between 45 and 50, so fi’* is negative in the (approximate) 
range 6 < T* < 45 to 50. Now TT, for the Lennard-Jones 6-12 potential is 
48.29. . . , towards the upper end of the range where D’* may be negative. 
If D’* is still negative at Tg,  the situation for the Lennard-Jones 6-12 poten- 
tial is as in Figure 8a. However, if B’* is positive at Tg ,  the geometry of the C ,  
locus would not show such a pronounced doubling back as in Figure 8a. 
The second solution (18b) would correspond to negative pressure. A third 
solution would be required at higher pressures, away from the temperature 
axis, to account for the subsequent progression of the locus towards the high 
temperature region. However, we do not consider our calculation of D’* 
for the Lennard-Jones 6-12 potential to be precise enough to determine 
unambiguously the sign of D‘* at Tg. 

4 CONCLUDING REMARKS 

In this series of papers we have endeavoured to develop a theory of fluids 
in which the softening of the molecular core is taken into account. By com- 
bining exact results for virial coefficients, and hard-core equations of state, 
with simple models of a temperature dependent soft molecular core, we have 
been able to construct the overall properties of characteristic curves and 
loci of extrema of C,. Especially novel has been the discovery of simple 
ratio relations between characteristic temperatures (IV) and the existence 
of “critical” values of the repulsive potential exponent (IX) which, in con- 
junction with a softening temperature t , ,  determine the exotic shape of 
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242 J. STEPHENSON 

the C, locus, both in the vicinity of its termination point on the temperature 
axis, and in the phase diagram. 

It is to be hoped that analysis of available data on virial coefficients and 
equations of state for simple fluid systems will reveal to what extent the 
variety of theoretically possible behaviours which we have discovered will 
be exhibited in practice. Particularly there is a need for high temperature 
(relative to critical) data for the second and third virial coefficients, in order 
to determine how our analysis of the C, locus applies to real systems. Addi- 
tional experimental data on the virial coefficients of monatomic gases which 
do not ionize easily would be most welcome. It would also be of interest to 
learn if there are any sufficiently soft-core systems that might exhibit C, loci 
with a single branch from the critical point to the temperature axis, or even 
loci close to the saddle-point region. 

On the theoretical side we plan to continue our study of Lennard-Jones 
m-n potential systems, via exact virial coefficients and approximate equations 
of state, and hence to investigate to what extent the exotic properties of the 
model (T, - I?) system are also present in this theoretically more realistic 
system. 

A review and summary of the material developed in this series of papers is in 
preparation. 
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